📚 31.最长公共子序列
💻 代码实现
typescript
/**
* @url https://leetcode.cn/problems/longest-common-subsequence/description/
*/
// dp[i][j] 表示text1以i-1为下标,text2以j-1为下标的最长公共子序列
// dp[i][j] = dp[i-1][j-1] + 1
// TODO:30,31再好好思索一下 连续性和不连续的区别, 可以通过思考下一个状态的依赖来思考变化
// - 状态被截断
// - 状态已经截断
// - 初始化和最长重复子数组不太一样
function longestCommonSubsequence(text1: string, text2: string): number {
const dp = new Array(text1.length + 1)
.fill(0)
.map((_v) => new Array(text2.length + 1).fill(0));
let res = Number.MIN_SAFE_INTEGER;
for (let i = 1; i <= text1.length; i++) {
for (let j = 1; j <= text2.length; j++) {
if (text1[i - 1] === text2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
res = Math.max(res, dp[i][j]);
}
}
return res;
}
longestCommonSubsequence("abc", "def");